Homework \#1 (10 points) - Show all work on the following problems:

Problem 1 (1 point): Find the gradients of the following functions:
(a) $f(x, y, z)=x^{2}+y^{3}+z^{4}$.
(b) $f(x, y, z)=e^{x} \sin (y) \ln (z)$

Problem 2 (1 point): Find the divergence and the curl of the following function:

$$
\vec{A}(x, y, z)=x y \hat{x}+2 y z \hat{y}+3 z x \hat{z}
$$

Problem 3 (1 point): Prove that the divergence of a curl is always zero.

Problem 4 (3 points): Calculate the line integral of the function $\vec{A}(x, y, z)=x^{2} \hat{x}+$ $2 y z \hat{y}+y^{2} \hat{z}$ over each of the following three paths:
(a) $(0,0,0)->(1,0,0)->(1,1,0)->(1,1,1)$
(b) $(0,0,0->(0,0,1)->(0,1,1)->(1,1,1)$
(c) Along the direct straight line from $(0,0,0)$ to $(1,1,1)$

Problem 5 (2 points): Check Stokes' theorem $\iint(\nabla \times \overrightarrow{\mathrm{A}}) \cdot \overrightarrow{\mathrm{da}}=\oint \vec{A} \cdot \overrightarrow{d l}$ for the function $\vec{A}(x, y, z)=x y \hat{x}+2 y z \hat{y}+3 z x \hat{z}$, for a triangular area with ordered vertices $(0,0,0),(0,2,0)$, and ($0,0,2$).

Problem 6 (2 points): Check the divergence theorem $\iiint(\nabla \cdot \overrightarrow{\mathrm{A}}) \mathrm{dV}=\oiint \vec{A} \cdot \overrightarrow{d a}$ for the function $\vec{A}(r, \theta, \phi)=r^{2} \hat{r}$, using as your volume a sphere of radius R centered at the origin.

